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SECTION 1

INTRODUCTION

The goal of this ongcing project is to develop and to validate a na;hew
natical model of a Naval commander's decisionmaking process. This process is
comprised of planning, organizing, and executing a given missicn [1].*

A model of & commander servos two purposes. They are: (1) to diagnose,
or ¢o identify, the commander's cognitive limitations that rander hiwm boundedly
rationel, and accordingly suggest decision aids or support oystems that will
entance his performancze, and (2) to appraise the effectiveness of such improve-
ments in the command ard control (C2) network, in which the cowmander ie¢ but

one element.

1.1 METHODOLOGICAL FRAMEWORK

Models of human decirionmaking are often classified into three catego-
ries: normative models, descriptive models and normative-descriptive models.
Normative models, by definition, prescribe how decisions should be made when
the decisionmaker's otjectives are explicit [2;3]. Models that mimic human
decisionmaking behavior, in a non-humanoid way, are descriptive. These
models are used when decisions are repeatable, and are often ~eferred to as
“bootstrapping” models [4]. Normative-descriptive models assume that the

decisionmaker strives to be optimal, but is constrained by cognitive ané, to

#Raeferences are indicated by numbers in brackets, and appear st the end of
the report,
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a lesser extent, neuromotor liaitations. The norma*ive-descriptive approach

is employed herein.

1.2 HUMAN DECISIONMAKING

A paradigm for the process of human decisionmaking has been conceptu~
alized by Wohl [1]. Wohl generically describes the decisionmaking process as
a cascading of four activities. They are:

1. Information processing.

2. Hypothesis generation and evaluaticn.

3. Option generation and evaluation.

4, Execution.
He has coined this paradigm SHOR (stimulus-hypothesis-option-response), since
it is an extension of the stimulus-response (S-R) paradigm of classical behav-
ioral psychology [S]. SHOR is a framework for atructuring decision problems.,
It is not an analytical wmodel. When referring to a SHOR model, what is im-
plied is a model that has been devised within the SHOR framework.

In this report, the commander’'s decisionmaking process is cast in the
SHOR framework, and a model for hypothesis evaluation is proposed. The hy-
pothes’s evaluation technique is normative in construct. It closely parallels
the co..col and estimation theoretic [6] approach to hypothesis testing. The

sufficient information for option generation and evaluatlon is suggested.

1.3 COMMAND AND CONTROL
Throughout this report, reference is made to the C2 process and the com-
mand, control, and communication (C3) system. Various groups and ind.viduals

have imbued these terms with somewhat different meanings. Thus, it behooves

us tc define what we are referring to by the C2 process and the C3 system.
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The ¢2 process is a coordinated set of information gathering and deci-
sicnmaking activities, carried out with the objective of effective force ap-
plication, i.e., the best utilization of platforms and weapons in the battle
environment. The C2 process is supported by the C} system. The C3 sysiem is
a collection of sensor, information processing, and communication subsystens
that allows the C2 urganization, which is comprised of military personnel
operating within a hierarchical authority structure, to receive information
from and transmit information about the battle environment, facilitating in-
formation interchange between the members of the C2 organization.

The C2 process thus involves a collection of human activities, organized
to accouplish certain goals. There exist no precise, standard techniques for
describing the C2 process, much less for analyzing or designing it. Part of
the difficulty in describing this process is bzcause it is a dynamic process,
carried out by a team of people, who may be distributed over a large geo-
graphic region and who are forced to operate under conditjions of both infcr-
mation and outcome uncertainty in achievi-ag their individual goals and those

of the overall C? organization.

1.4 OUTLINE OF THE REPORT

Section 2 reviews several theories of human respouse and introduces the
SHOR paradigm. Section 3 describes a mathematical model of the decision-
mak2r's hypothesis evaluation ptocédure cast in the normative framework. A

discussion of the effort to date and recommendations for next year's research

comprise Section 4.
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SECTION 2
HUMAN RESPONSE MODELING

sad The major task for this project is to model human behavior in specific

situations and, in particular, to model high-level decisionmaking for anti-

submarine warfare comumanders (ASWCs). It is generally agreed that a model con-

é{ sists of a set of assumptiong, an organizational framework, and a set of rules
for manipulating the details of the model, Models of human behavior are usu-

i . ally validated using human performance data obtained from laboratory simula-

. . tions and/or fieid experiments {7;8;9].

Several approaches can be employed for modeling human behavior as de-

' i' picted in Fig. 2-1. These approaches can range irom simple descriptive models
i to models depicting optimal human behavior. Most of these models can be cate-

gorized into three classes as discussed below,

! ' 2.1 DESCRIPTIVE MODELS

The descriptive models of human response attempt to accurately depict

: 5: observed human behavior. As such, these models require an oftentimes large

! Ef data base in order to explore relationships and deduce treads. By construct,
N = descriptive models in the engineering domain are a posteriori in nature, and
E ;5 often with little or no underlying thecreti:al foundation. The model results
? . are generally task specific, since they focus only on the data associated
N

. 55 within a specific context. The net result is & model with extremely limited

% B

.......
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o TASK DEPENDENT o CONSTRUCT IS TASK INDEPENDENT ® REQUIRES OBJECTIVE FUNCTION
o LITTLE OR NO PREDICTIVE o EXPERT BEHAVIOR ASSUMED ® REQUIRE SUBMODELS OF HUMAN
CAPABILITIES e PREDICTIVE CAPABILITIES LIMITATIONS
i o PREDICTIVE AND DESCRIPTIVE
] z‘:::;::“’ :OD:::mm o ¢  KNOWLEDGE-BASED MODELS CAPABIL ITIES
Rl b b o EXAMPLES: MULTIATTRIBUTE ® KNOWLEDGE-BASED AND RULE-
: UTILITY (MAU) MODELS OF BASED MODELS
DECISION THEORY
DECISION ANALYSIS
o ERRORS DESCRIBED ® EXAMPLES: OPTIMAL CONTROL
o ERRORS MINIMIZED MODEL (OCM), DYNAMIC DECISION

MODEL (DDM)
o ERRORS PREDICTED

(XL

Figure 2-1. Models of Human Behavior

predictive capability in describing human response or performance in a dif-
ferent environment., Human response models that are rooted in psychology,
biology, and ergonomics are often descriptive.

An example of a descriptive model is the error rate of a hugan in a tar-
get identification and classificatiorn task (e.g., attack or reconnaisance air-
craft, friendly or enemy). The error rate, e.g., 2 errors/1000 targets, as
measured in the performance of the classification task, is not linked to any
underlying theoretical reasoning. Also, it is doubtful whether this number
has any utility if one wishes to know the error rate in a different task
environment, or when the operator is provided with better information.

Most descriptive models are regressive. In this framework, a human's

control or decision (or dependent) variable, dy, is written as a linear

S e e e R e i T A S B S PR S T I 0 L L L S S R LR A T Tl Tt 3 -.{




iy
Tt
A

e v
1

gD A

T 'y Y W ¥
. Cal afnt

PY

ccater RS
oo

& £

e W
W -

)
\‘”

i
¥
Nl

(&)

7. .
Vel
g

B T L)

TF SMATTL.TL T

e~ ¥

r & /Y WOY”

- L B & . &4 FEmTWRAs F 2 F &

M)
"

ALPHATECH, INC.

combination of the pertinent system variables or attributes (i.e., the inde-

pendent variables), xj,

dj = I cj4xy .

The coefficients ci4y, which are the slopes of the regression lines, are de-
rived by regression analysis using data for the x4 and d4. This equation
forms the basis for the early models of manual control and for many other de-
cision models. However, a drawback of these models is that the resulting cij
have no intrinsic meaning; if the task is changed, a new set of data must be
collected and a new set of cjj's computed. Clearly, such a model is not

predictive.

2,2 NORMATIVE MODELS

This class of models is predicated on the assumption that human behavior
is optimal in some weli~defined manner. For example, in a decision context
one can assume that the human will compete against nature (or an adversary) to
maximize his expected gain, or utilirr, over a given time horizon. 1In another
view, one can assume that the human's recponse is specified by a regressive
equation similar in form to that presented above but then the human tries to
maximize reward - or any rational criterion - by optimizing the selection of
the coefficients cij. Decisionmaking models developed through the more mathe-
matically oriented disciplines, such as the control, stochastic estimation,
information, probability, and decision theories are typically normative.

The key ingredient for developing a normative model is the specification

of an objective function or goal that is assumed to be extremized by the

.......................

.........
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human. Once specified, tools of optimization theory* can be applied to solve
for ar optimal policy or decision rule. Thus, the approach is capable of gen-
erating predictions of optimal human response without the need for a priori
date. Furthermore, the optimization approach is not limited to any type of
task so long as a task objective can be specified.

This class of models prescribes what a human should do. However, experi-
ence with such models has shown that the model results tend to be overly opti-
mistic, i.e., model performance exceeds human performance; human performance
is noroptimal, This is exemplified by the findings of Tversky and Kahneman
[10], Lopes [l1], and Einhorn and Hogarth [12], all of which indicate that
people do not adjust their probability estimates in strict accordance with
Bayes theorem. Attempts to bring model results into agreement with data usu-
ally focus on generating a nonoptimal decision rule for the human, or on modi-
fying his objective function. Thus, concepts such as discounting future re-
wards, optimization over a limited future horizon, and substitution of util-
ities for task values have been introduced as modifications to otherwise purely

normative models,

2.3 NORMATIVE-DESCRIPTIVE MODELS

This class of models is normative in construct. but with the assumption
that the nonoptimality of the decisionmaker arises from his own inherent limi-
tations; for example, delays in identifying and classifying targets, aggre-
gating and processing information, randomness, limited processing “bandwidth,”

short-term memory (STM) limitations, and limited combinatorial capability.

*For example, dynamic programming, maximum principle, calculus of variations,
least squares, etc,
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Thus, rhe normative-descriptive modeles are couched on the hypothesis that the

human tries to respond optimally, subject to these limitatione, This norma-
tive construct requires the specification of an ohjective function or goal,
as in the normative case, but optimization is now constrained.

The descriptive features of the models are those associated with the hu-
man's limitations. Thus, the model does not attempt to explain why or how
certain limitations arise, but rather includes their effects as constraints.
For example, numerous experiments in the psychological literaturas indicate a
maximum storage capacity for STM of seven (plus or minus two) items [13].

Isolating and mathematically representing the important human limitations
is the essence of the descriptive portion of the normative-descriptive class
of models. Clearly, human response data are necessary to accomplish this
task. In addition, we muat ensure that the limitations are not task depen-
dent, but are indigenous to the human among tasks, e.g., time-delay and
randomness . * Fortunately, with the aid of human response data from the ex-
perimental psychology literature, it has been possible to isolate and quantify
many of the principal limications. Thus, the normative-descriptive models are
truly interdiscipl.nary in nature. They are also capable of representing in-
dividual differences.

The normative-descriptive models have the ability to generate predictions
¢f human response and performance once the objective function and limitations
are specified. The fact that this class of models lies between the purely

normative ones and the descriptive ones implies that this approach attempts

*Thus, data from simple, independent experiments that focus on identifying the
limitations can be used as a descriptive constraint in more complex
scenarios.

...............
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ALPHATECH, INC.

to equate vhat a human does with what he should do. Employing this principle
of bounded rationality, the normative-descriptive models have generally met
with excellent success in application. In manual control situations, the
normative-descriptive approach led to the development of the optimal comntrol
model (OCM) of humen response [7;8]. In complex decisionmaking contexts such
as C? systems, however, where the cognitive skills of the operator predominate
over the motor skills, there are virtually no normative-descriptive models.
Indeed, there is not even a consensus on modeling, and only a few descriptive
studies exist in process control situations [l4]. One beacon, however, is

the application of a normative-descriptive construct to multitask selection or
sequencing where a variety of tasks compete for the decisionmaker's attention.
The dynamic decision model (DDM), developed for this situation, captures the
interplay among human estimates of time required, time available, and expected
reward, while including submodels for various human limitations [9]. There
has, however, been 2 paucity of research aimed at extending the normative-
descriptive modeling approach to more complex decisionmaking tasks such as
those of C2, An example does exist within the electrical power domain [15],

in which the decisionmaking behavior of power grid dispatchers in emergency
situations has been successfully modeled in line with normative-descriptive

constructs.

2.4 MODES OF HUMAN BEHAVIOR

Another issue that must be addressed when modeling human decisionmaking
is the classification and representation of the different modes of behavior.
Rasmussen [16] has suggested a classification that delineates three types of

behavior: skill based, rule based, and knowledge based.
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Skill-based behavior refers to actions with a strong habitual, inveterate
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flavor, such as manual control or simple information processing. Not much

conscious attention need be directed toward such behaviors. Behavior that is
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" governed by procedures or doctrine is termed rule based. Knowledge-based be-
havior requires individuals to extract the appropriate information from their
!! knowledge base and construct or deduce the appropriate rulas or skills to
employ. It is assumed that decisionmaking, hypothesis generation and hypoth-
esis testing involve knowledge-based behavior.

The importance of appropriately identifying what class or classes of be-~

havior are involved bears directly on how that hehavior is to be modeled.
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Skill-based behavior might call for neurophysiological equations, while look-

: up tables or production systems can be used to represent rule-based behavior.
% jf‘ Knowledge-based behavior requires a different and more abstract tack, such as
;% knowledge of objective functions, cost functions, or goals, so that such be-

! havior can be encoded.

»

. 2,5 THE SHOR PARADIGM

i . The SHOR paradigm [1] was developed to provide a framework for decision

E- task description in C2, A task will often have certain well-defined proper-

é _; ties or structures and it is the purpose of SHOR to provide a useful mechanism
i ;; to describe these salient task features.

f 5: In essence, the SHOR paradigm is derived from the stimulus-regponse (S5-R)
? " principle [5) of classic behavioral psychology. The basic elements of the

; E‘ SHOR paradigm are shown in Table 2-]1. As depicted in the table, raw data are
'

i sensed and processed by the perception processor, i.e., in the S component

of SHOR. Processed data are then operated on by the H component of the SHOR
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..........

‘paradigm.

This operation addresses the quest:ion:

What is the situation or

state of the system? Hypotheses are generated and evaluated to formulate or

to describe the state of the system.

or option generation and evaluation oparation addresses the question:

Once hypotheses are formulated, the O

What

if this or that is done? Options are considered and evaluated in the light

of the current hypotheses about the situation and the desired mission objec-

tives.

Lastly, an action or response, R, is organized and executed in line

with the option selected, and in turn creates an nbservable effect on the

states of nature.

TABLE 2-]. SHOR PARADIGM IN TERMS OF TASK ELEMENTS
S H o R
STIMULUS HYPOTHESIS OPTIONS RESPONSE
PROCESS MAP DATA INTO EVALUATE EXECUTE
TASK DATA INFORMATION ADMISSIBLE ACTIONS
ACTIONS
ENVIRONMENTAL SENSORY HYPOTHESES DECISIONS THAT
INPUT DATA DATA ABOUT STATE AFFECT STATES
OF NATURE
SENSORY HYPOTHESES DECISIONS THAT RESPONSES
OUTFUT DATA ABOUT STATE AFFECT STATES
OF NATURE
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2.6 ELABORATION OF THE SHOR PARADIGM
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It 18 assumed thet the decisionmaker is continually processing and ana-

lyzing information and, when necessary, executing responses that have some
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specific impact on the real world. Thus, to observe a decisionmaker is to
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observe an ongoing process, and when using SHOR to describe this process it

must ve viewed as dynamic.
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It is assumed that the decisionmaker's actions or responses affect the
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real world through a set of controlled variables. The effect of these re-
sponses, as well as those of other uncontrolled variables (e.g., enemy action
31 and weather), are dacectable by surveillance and intelligence sensors, and
can become input data or stimuli for the perception processor, The.percep-
tion processor utilizes data-driven and/or concept-~driven processes to search
the incoming data for patterns to recognize and classify.

The hypothesis or set of hypotheses under congideration is the result of
interaction in the perception processor between the incoming data and the hu-
man's internal representation or mental model of the total system with which
he is dealing. The more expert the individual, the sharper and richer the
mental model. In any case, the resulting hypothesis provides the basis for
comparigson of the incoming data with predictions derived from the hypothesis.

Given a set of alternative hypotheses, incoming data may serve to increase

the decisionmaker's subjective confidence in one hypothesis over the others.
Alternatively, the data may not support any of the hypotheses. Note that it

is this condition wvhere no hypotheses are supported by available data that

“ -

R leads to an alteration of one's mental model. Likewise a single hypothesis
:: £ may Or may not receive support. If no hypothesis is supported by the data,
ﬁ o one must then recoasider the validity of both data and hypothesis and perhaps
LS
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modify the hypothesis accordingly. The hypothesis with the greatest subjec-

tive confidence or perceived likelihood of being correct will be used to help

generate response options and, ultimately to help select a response.
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2.6.1 PMunctions and Characteristics of the Perception Processor

(S N

r

At the stimulus or sensory end of the perception processor we axe dealing

more with data processing than irformation processing, although the two pro-

o

N

cestes can never be completely dissociated. If we consider the outside world

————

in purely physical terms, it can be described as a flux of emergy that exisis

in different forms and at different levels [17). Here, the problem is one of

detection, Human sense organs are responsive to onliy a tiny portion of the

e
]

electromagnetic, mechanical, and chemical flux. Early psychophysical concepts
of fixed sensory thresholds have given way to modern signal detection theory,
which describes variations in detection probability in terms of a receiver
operating characteristic (ROC) curve. The ROC curve depicts the likelihood of
a subject's guessing that there is a signal present when in fact there is one,
3{ i and the likelihood of his guessing that a signal is present when in fact thera
is none. Signal strength relative to noise bacu;round certainly has an impor-
!! tant impact on the ROC curve as a whole, but variables such as cost, utility,
i expectancy, attitude, and the like are equally important in that they serve to
bias the operating point or. the ROC curve. In fact, it has been argued that

[

in most real situations detection results are deteramined more ac a function of
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subjective variables (e.g., perceived costs and attitudes) than by sensory

acuity., This also implies that appropriate training, specific monitoring pro-

i 9 P
L

cedures, and well-deaigned displays can mitigate the negative effect that cer-~

tain psychological variables can have on detectionm.
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DATA-DRIVEN VERSUS CONCEPT-DRIVEN PROCESSING

6
.
.

Operations that are s2t in motion by arriving data are referred to as

! . data driven. Lindsay and Norman [18] describe the data-driven process as

: follows: the onset of processing is initiated by incoming data; each of sav-

era) stages of analysis performs its operation of recciving input (data) and

) . doing something with it; and the outputs of each stage are the inputs that

‘ drive the next stage. This process proceeds in a smooth, logical progression

culminating in the recognition of the item. lothing happens within a data-

driven systea until data are input at one end. This is contrasted with a

concept-driven process, which begins with a conceptualization of what might be

. present (i.e., a hypothesis) and then lo-ks for confirming evidence, influ-
encing the processing mechanism to search for the expected results [18}. A
perceptual prccess is concept-driven whenever knowledge of the possible inter-
pretation or ccnceptualization of sometring helps in perceiving that thing.

n Finally, it must be emphasized that neither preocess alone is sufficient to

R explain or carry out the pcrceptual processing of data., Therefore, in this

- study both are assumecd t be ocuurring simultanscusly.

CLASSIFICATION AND »ECOGIITION

;I: Initial percep:ual precessing of the sensury data involves boeth attention
RN

allocation and patter: ricogaition. Firsc, it is necessary t~ sort out rele-
e
vant dats from the myriad of sensory inputs. Then the problea becomes one of
. pattern recogniticn. Immediately we are faced with an apparent paradox: it
W sppears that we must understand the msaning of cdata before we can analyze its
: content properly; but how can we understand the mesaning of data before the
" analysis of its conten: has occurred [18]? If we assume that the human brain
2
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is capadle of simultaneous snalysis at several levels®, a resolution of the

parado: is possible. In particular, we assume that perception is both concept-
!! d¢riven and data~driven, thac these two forms of processing intaract with each
other, and that their combined power is capable of analyzing data that neither
process can dea) with alone.
o One of the simplest scheres for classifying and recogniszing patterns,
and a prime example of a data~driven process, is template matching. For each
f‘ pattern to be recognized there mist be sowe preexisting template (representa-

tion). 70 sccomplish recognition, the incomirg dats patrtern ls matched ageinst

L the preexisting template. Tempiate matching is quite straightforward; since
§4 inconing data patterns are assumed to be matched against all of the possible
Y

templates simultanecusly, the cumbersome procedure cf trying out a successiocn
of templates one at a time to find the best fit is eliminated. Unfortunately,
simple template matching lacks the flexibility to account for human pattern

'I recognition, since if the incoming data varies even slightly (e.g., in size or
R orientation’ from the template, the procecdure will fail. The introduction of
fuzzy templates or of preprocessing of the data before a match is attempted

I! can oftan ilaprove matching.

An alternate view is that specific templates are not employed. Rather,

;: specific feature detectors are used, and thers is good evidence that such de-
iy tectors not cnly exist but map directly onto neurological structures and or-

ganizations within the bdrain., According to this thecry, a succession of fea-

oo ture processors work on the incoaing data, with each processor performing a

i *The brain's ability to simultaneously procoss information at different levels
is supported by the work of Karl Pribram, who argues that the brain is holo-

e graphic in nature when considering storage and processing [19].

[
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ALPHATECH, INC.

different funciion. The outcome 13 a decision on what the most likely pattern

ie that conforms to thea data. 1If conceptual processing (i.e., some knowledge
or cibactation of wvhat the data must de beyond what is actually present in the
data) is added to such featurs processing, the likelihood of successful inter-
pretation is further incressed. This added inforaetion might come froa the
context of the sensory data, where the overall environment in wvhich experiences
are embedded represents what ir meant by context. As lLindsay and Norman (18]
have ﬁointcd out, the ability to use context makes the human perceptual syctem
far superior snd more flexible than either feature detection or .emplate match-
ing alone. The combined effects of data-driven and concept-driven processes
thus provide a basis upon which higher cognitive processes can act.

Note that while descriptive paradigms such as those mentioned above exist,
there are at present no mathematical wodels of these processes and faw good

theories on which to base such models.

2,6.2 The Human Internal Model

As a human becomes well-trained in a specific man-machine system task and
context, he develops an internal characterization of the dynemical response
and behavior of the systea with which he interacts [14]). This mental wodel,
which is refined through the processes of lesrning and experience, is one of
the key discriminators between rule-based human response and knowledge-based
response [16]. As such, inferring the human's internal model is a necessary
precursor to the developaent of normative and normative~descriptive models.

The concept of a mental model has long been recognized in the psychol-
ogical literature (e.g., Tolman's “cognitive maps” or lewin's “life-space”)

[20;21], but only of late has the concept begun to evolve into a mathematical

16
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b coastruct, sufficiently well understood for inclusion within an overall human-

system model [9]. An internal or mental model may be thought to consist of

!l three basic ingredients: (1) a description of the variables (states) of im-
o portance, including external inputs and disturbances (independent variables)
23- nd outputs (dependent variables); (2) the assumed csural and/or correlatioual
!| relationships that uxist among the variables; and (3) values for the coeffi-

cients (relative importance of terms) in the equations tnat define the rela-

;ﬁ tionahips. In any Jiven contaxt the process of eliciting or inferring a hu-

—

pan's internal wmodal of aystem response is extremely difficult, In highly

Y

complex dscisionmaking contexts, the nuaber of system variables becomes too

> v
P
3

large, so that aggregation or chunking within the internal model is likely.

| ey

In addition, static relationships among variables are likely to dominate in

-~ v

LA s

the internal model.

-

An internal model serves three primary functions in the broader human-
-
I‘ system modeling context: hypothesis generation, data interpolation, and out-
come extrapolation. First, the relationships among variables in the internal

model can be used in the proress of transforaing data into information by means

.l of filtering, estimation, correlation, and discarding of input ctimuli, It in-
j b volves data validation, which in turn affects internal wodel validation. The

§§ second function of the mental model involves its use for prediction or extrap-

o olation, i.e., in directing the search for confirming or disconfirming data.

iv This is the process of determining what additional data should be perceivable,

;j given that the hypothesis based on the mental model is the true one, This re-

= quires a rich and robust mental model, an estimate of the present state, and

-

N
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& an estimate of system inputs/disturdonces cver a prediction horizon. Herein

lies cne ox the two main sources of uncertainty in decisionmaking:
ll @ Information input uncertainty., Errors in estimating the
B present state due to imperfect internal wodeling or sen-
' sory limitations in perceiving input data will affect
L prediction, interpolation, and evaluation accuracy.

Since the internsl wodel is only an approximation to the actual situva-
tion or system dynamics, the effects of uncertainties will always he present.
5. Indeed, it is coften possible for an internal model to be misled, thereby exac-
erbating the effects of any uncertainties. PFinally, the third function of the

mentul model involves its use in outcome extrapolation and option analysis,

The intarnal construct that a Naval warfare commander holds of the process of

-
Ll

a mission's unfolding not only serves to correlate the various measurements

. he obtains, but also provides him with a means to assess the effects of an

<
PRy

action. Herein lies the second major source of uncertainty in decisionmaking:

® Consequence-of-action uncertainty. Errors in the internal
model relations, combined with large uncertainty as to the
decisions/actions of nature or an adversary, will cause the
future evolution of system response to differ from that
pradicted by the internal model.

o
;

Pt
s
‘s

Deteraination of a suitable mental construct and representation by a set

‘ -r.

of verbal rules or mathematical equations for purposes of analysis is a neces-

sary, albeit difficult, aspect of describing an individual's cognitive activi-

Py
T
SRS AN

ties in a given situation. On the one hand, the internal model must capture

e
§§ the fundamental static and dynamic relationships inherent in the military sit-
N uation or engagement. On the other hand, the model must be sufficiently sim-
.;\

& plified and or aggregated so as to be compatible with human cognitive limita-

tions and constraints.

i
PR
.

18

E'f
fa




r'—l..-.l....\ R S AP o

/s
O

-,

— T
AT

S———y
AR
. 7

£

e
PAAFRIN
- ey

sty

als

—r
Y]
PR

P B S T e B o e R SR B O T S N I S Y

ALPHATECH, INC.

2.6.3 Hypotheses

In many ways the concept of a menial model is closely allied with that
of a hypothesis. For example, ore can conceive of a hypothesis as a mental-
model aggregated and specified for a particular set of circurmstances. This
conception assumes that 2 subset of the variables delineated in the "general”
or "full” mental mcdel are selected for the specific situation at hand, to-
gether with the appropriate functional relationships and coefficients. Each
hypothesis represents a specific conceptualization of the state of nature
and hence a model of the particular situation - it is the human's attempt to
assess the situation.

It is assumed that an individual can hold more than one hypothesis at a
time, which implies different alternative specifics of the situation. An
individual in such a situation might be heard saving: if the situation is not
"A" (1f “"A" is not the state of the system’, then it might be "B" (some cther
state of the system). Given human STM limitations, however, it is uniikely
that an individual cen seriously consider more than two or three hypotheses at

any one time.

2,7 HYPOTHESIS GENERATION, MENTAL HODELS, AND MEANING

Hypothesis generation addresses the problems of how people generate a
reasonable set of hypotheses and modify the set as the need arises. Hypoth-
esis generation, including what is commonly referred to as creative thinking,
invoives searching memory for relationships that seem appropriate to the

situation.* Well-trained individuals by definition possess a rich and

*In spice of its importance, until quite recently very little attention was
devoted to the issue of hypothesis generation (see Bruner, Goodnow, and
Austin [22] or Wason [23] for some laboratory experimeuts on concept at-
tainment and "discover the rule"” type tasks).

19
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detailed knowledge base and mental model from which to infer possible situa-
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(A ARAR m—r N v
L s

v g

tions causing an event, But what exactly is it that these experts are doing?

N

l !' Is it a creative activity (a mentalist view), or are they simply processing :

g . information (a reductionist view)? Neither view appears tenable since the j

\ Ei former is not subject to experimental verification and the latter does not 7
m address the underlying meaning of the information being processed. In fact, !

E ’ whereas information theory sidesteps the issue of meening and deals only with

; {: symbol transmission rates and errors, understanding and describing the human j

RS ]

decisionmaking process requires the consideration and operational definition ;

e

ey
vy
*
.

of meaning. We assert that the fundamental purpose of hypothesis generation

is to extract meaning from data. This assertion gives rise to a measure of

performance for the hypothesis generation subtask. Since data take on meaning

in the form of hypotheses, the extraction of meaning from data can be measured

——

PR
o

in terms of hypothesis uncertainty. As we shall see, the task of hypothesis
.l generation thus is really a task of meaning extraction and, concomitantly,
LI uncertainty reduction.
Uncertainty in physics and in information thecry is a well-defined mathe-
’! matical concept, one directly associated with the variance of a stochastic pro-
i cess ani the resultant probability of occurrence of a given outcome at a given

fu time. While this approach is satisfactory from a mathematical standpoint, the

term itself is subject to confusion and argument when attempts are made to
extend its application beyond physical systems. Shannon, for example, explic-
itly chose to eliminate the concept of meaning from his work, defining infor-

mation as negative entropy (or certainty) in terms of discrete symbols and

s -8

their probabilities of occurrence, or in terms of signal-to-noise ratio [24].
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ha This limited definition, while extremely powerful for communications
i
system engineering purposes, 1s of little use in designing C3 systems. A c3
l, system's major functions, in addition to the obvious ones of (1) gathering
- and disseminating information, and (2) planning, organizing, and executing
o
he responses; include assisting decisionmakers in extracting meaning and in
|| predicting outcomes.
°® Meaning extraction. An issue in extracting meaning from
- input information appears to be how military commanders
;i- deal with hypotheses. Fcr example, having no hypothesis
b about the meaning of a given input data set is tantamount
} o to all possible hypotheses being equally likely. At the
| other extreme, having a large and well-structured set of
e hypotheses tends to overburden one in the opposite direc-
i tion. Neither extreme serves f.:0 focus attention upon
| & what new information is to be sought. Given a plethora of
i g; information and a number of hypotheses, the philosophical

operationalist's view must be held: a hypothesis is use-
less unless its predictions can be tested. This rule will
serve to reduce the set of hypotheses under consideration
to a subset of testable ones. The next step is to test,
and that requires that new information be sought. As a
case in point, new sensor and sensor correlation equip-
ment on Azgis ships will be able to provide simultaneous
information on hundreds of targets. The critical needs
will be those of: (1) blocking irrelevant information,
and (2) cueing of selected sensors to obtain discriminant
ot information on selected targets in real time. But neither
can occur in the absence of hypotheses. One, or at most

a very few, carazfully constructed hypotheses will serve:
(1) to eliminate from wasteful consideration that input

| information that is not relevant, and (2) to direct atten-
RS ion to requisite new discriminsnt information to further
SRS reduce the hypothesis set. We assert that tacticians,
strategists, diagnosticians, executives, and commanders
are expert to the degree that they possess and effectively

?
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f: exercise this ability of hypothesis generation and testing.

.. Wise's [25] concept of "emergent decisionmaking” implies a

- process of hypothesis creation, development, refinement,

) test, rejection, modification, and ultimate acceptance and
action. As suggested by Wohl (1], the convergence of this

" process may give rise to the perceived “emergence"” of a

o decision. We further assert that the rate of hypothesis

' convergence is an important contributor to the rate of

- reduction of subjective uncertainty.

|2

21

AR I A e T e e e T e e e A X . . . .
W e e T T T T T e T e AN R B : IR . Lo
T T R R T ST W L ST W DR A TS T 2ty el e e e et el At e et




RIS s, Lem AW A B T e Raad T aTaT e s A R . TR e T Te L e

PAPRS PREFLAS = v

wwew e

#2170 T .

Fabsan

TSN R . W TSRS e TR TR R TR X Y 4R T Y v

ig

7T
« el
s s

; ——
PR
P

-, =

P PRI - -
- - - PR ~ - - - - ‘..- - - - . - - - . - - . L .
ol ol T L N S S S L A L R S P

ALPHATECH, INC.

® Outcome prediction. The key issue in predicting military
outcomes seems to be how commanders utilize the hypotheses
they construct. As noted earlier, his mental model is
really a commander's aggregated model of reality. To the
extent that his model is accurate and the sources of vari-
ance (e.g., data accuracy, enemy and own force behavior,
and weather) are small, he can formulate hypotheses and
predict outcomes associated with various action alternatives.

While the commander's model of reality is certainly not a
mathematical one, he nonetheless uses it in just the same
way as a scientist does. Based on data, he constructs a
hypothesis involving events, relationships, and causality.
He then tests his hypothesis by using it to predict the
course of events given a new set of conditions, later
observing the degrees of concordance of the actual versus
predicted course gnd modifying his hypothesis accordingly.
Thus we see that the hypothesis, as well as being a model
of reality, can also act in a very real way as a gen-
erating function for future scenarios.

It is important to note that the number of hypotheses generated with re-
spuct to a given data set is not a useful measure in this contaxt, contrary to
Gettys et 21, [26]. As noted above, too many hypotheses are as detrimental as
none at all,

Thus, how human decisionmakers accomplish hypothesis generation is a
critical issue. Recent work on analogical rsasoning and mental models has
shed some light on the process of human hypothesis generation. The analogical
reasoning view of Klein [27]) asserts that when faced with a problem or a de-
cision situation we seaich memory for similar or analog situvations; the solu-
tions to past problems (or minor variations of them) become the current hy-
pochesis set to be tested. A process similar to the analog process is to scan
memory for a parallel situation and then to manipulate the variables that seem

to have led to solutions in the past for possible applications to the present

problem.
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...............

The mental mcdel position [28;29] contends that the hypothesis set de-

rives directly from the interaction of input information with

an expert deci-

sionmaker's mental model or internal representation of a problem situation.

if a w:ntal wodel can serve as a theory does in science, then
be derived from them in a similar manner; namely from the set

variables comprising the theory, the functional relatiouships

hypotheses can
of elements or

among the ele-

ments or variables, and the constraints on the functional relationships. By

extension, the same should hold for expert knowledge domains.

For highly trained expert decisiormakers (commanders), the analogical

view of hypothesis generation seems an appropriate position.
assunc that ASWCs will be searching their knowledge base for
ogous situations as a basis from which to generate plausitle

the current state of nature.
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N | SECTION 3
) MATHEMATICAL REPRESENTATION OF SHOR: CONCEPTS AND PROCESSES
-
B This section describes the mathematical details of the normative mecdel
;} of the human decisionmaking process as developed to date. The model is com-
- posed of well-known types of simple components, chosen for their tractability
F ;3 and familiarity, which, when combined, behave like a human decisionmaker.
E . The model components were selected for their input-output behavior, and not
% ﬁg because their internal workings resemble those of the human mind. Similarly,
E f: the model details might, at times, seem more complex or redundant than the
E 2 human internal processes we associate with them. For example, we need rela-
L i‘ tively sophisticated mathematics to capture the idea of a human choosing the
. "best™ hypothesis, or reevaluating the data in the light of a new hypothesis -
; %; actions that seem simple and natural. The complex mathematics, however, have
i l. simple parameters that we can assoclate with mental views of the world and
E ’ human limitations.
% Ei The section is organized as follows: subsection 3.1 presents an over-
| ;: view of the SHOR model as devei<jped to date. Subsection 3.2 then presents an
'? overview of the first half of the model (dealing with hypothesis evaluation)
in more detail, and subsection 3.3 describes thes individual elements used for
;; this half, Subsection 3.4 presents an example of what the model variables
;; would be in a hypothetical ASW application, and subsection 3.5 discusses how
- model behavior relates to parameter selection (in particular, how errors
, {i behave with time).
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3.1 SHOR OVERVIEW

The SHOR paradigm represents a sequential breakdown of human informa-
tion processing., New information (stimuli) are processed and given meaning -
causing one or more hypotheges to be generated and considered. These hypoth-
eses, and the decisionmaker's estimates of their relative probabilities of
being true, are used to evaluate possible actions (options) before a response
is chosen. The process is shown schematically in Fig. 3~1, where the stimulus
(S), hypotheses (Hj), and response (R) are process variables (functions of
time) and the hypothesis and option evaluators (H,0) represent operations on
these variables. The generation of hypotheses and options requires a higher
level of creativity, and modeling, than their processing and evaluation, and
will be treated separately in a subsequent phase of this research examining
mental models as genefating functions.

The overall intent of this model is to represent the Lhuman decisionmaker
as a controller working in an uncertain environment with multiple hypotheses
about what is going on in the battle. This process can be represented as in
Fig. 3-2, where the stimuli are measurements (z) made of the real world; state
estimates (;) and subjective probabilities are formulated about the real world;
and control actions (u) are selected to affect the real world.

The state of the system refers to the total collection of underlying
variables that change with time and that are sufficient to capture the status
of a system. The data refer to the much smaller collection of measurements -
noisy samples of some of the state variables — that are available to the deci-
sionmaker. The state estimates (;) are his internal estimates of the true

state, based on all of the data available. There is a separate state estimate

for each hypothesis, since each corresponds to a different view of what is

25
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Figure 3-1, SHOR Model

() (R) 0

STATE ESTIMATES » CONTROL
DATA FOR EACH HYPOTHESIS |______o]

OBJECTIVE

Figure 3-2. SHOR Mathematical Representation
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going on (i.e., a different mental model). The probability p(Hj|z) is the con-
fidence placed on each hypothesis (Hj) after the data have been received and
considered. All of the variables x, z, and u are vectors (i.e., they can have
more than one element, such as positions, velocities, or orientations) and are
functions of time (either continuous or discrete), and we wish to model how
they evolve and change as new information arrives and time passes.

A hierarchical breakdown of a SHOR model is described, specifiying at each
stage the important processes and variables that represent each component. The
highest-level breakdown was intuv SHOR itseif. Certain assumptions are implicit
in Fig. 3-2, but the main restriction it places on our modzl is the passing of
only state estimates and probabilities (for each hypothesis) between the H and
0 blocks. These variables were chosen as both sufficient variables for option
evaluation and significant results of hypothesis evaluation. They are the pri-
mary processes that capture the notion of attaching meaning to the data from
the real world, and they answer two essential questions: (1) given a set of
possible hypotheses how does the data support or refute each hypothesis? and
(2) what does the data imply about the state of the battle assuming each hy-
pothesis is true? The answers to thesc¢ questions are represented mathemati-
cally by the conditional probabilities p(H;j|z) and state estimates ;1.

Although the primary emphasis of this year's effort is the description of
the hypothecls processing, it is important to make certain assumptions about
the option evaluation couponent in order tc guarantee the sufficiency of the
H component outputs, i.e., only the posterior probabilities, p(Hj|z), and state

~

estimates, xi, are necessary to discriminate between alternative actions.

27
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The "best™ action is determined by the "minimization” of the risk of los-

ing own-force assats (e.g., the carrier in a battle group). Explicit trade-
offe must be made between deploying a platform to prosecute a known threast
and creating “holes” in the defense (e.g., increasing vulnerahility to the
next, as of yet undetected, threat). As a consequence, it is expected that
most options will involve the commitment of resources to better determine the
situation, i.,e,, to snable him to discriminate between hypotheses by taking

mOore measurements.

3.2 HYPOTHESIS EVALUATION

Thz hypothesis evaluation component receives data and hypotheses about
the real werld and determines whether the data support esch hypothesis and
what the data imply about the state of the world if each hypothesis were true.
For our purposes, a hypothesis is a conjecture about what is going on - it is
a model of how the world (or local battlefield part of the world) works and
what an enemy intends. It must descridbe both what is happening and what is
about to happen. This, in fact, is similar to the mathematical nrotion of
state, and we define a hypothesis as a mental model of the world in which the
wodel states capture the current information about the world. This model 1is
much smaller than a human's total mental wodel of the battlefield. The hy-
pothesis may be thought of as a subset of the total model with specific param-
eters or submodels replacing uncertain components in the larger model.

For example, an expert commander knows how vehicles behave, weapons work,
and battles evelve, but he may be uncertain about what an enemy is doing. His

hypotheses may b: several alternate models of what the enemy is doing, based

28
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on components chosen from his experience and hic whole model. The hypotheses
thus fit within the larger model and yet are more specific, or less uncertain,
than the larger model.

The first requirement for the hypotheses is that they be different enough
to imply different states that can be observed from the data, i.e., the dif-
ference between hypotheses must be both discernible and observable. Two hy-
potheses that differ only in an insignificant or unobservable detail are not
considered. Of course, hypotheses that are consistent with the data at some
time but that employ fundamentally different models (e.g., enemy attacks at
point A or B when the data indicate he is heading near both) are cousidered.
In fact, most cases of interest involve multiple hypotheses that cannot yet be
ruled out by the data but that are nonetheless differant.

If the hypothesis is a model of the world, and we wish to estimate the
states of the model and the probability of the model's being true given ncisy
measurenents of the world, we are led to consider Kalman filters and multiple
hypothesis testing techniques [6;30]. The strength of these techniques lies
in their mathematical foundations and adaptability, and both are used for the
hypcthesis evaluator dascribad below. We are encouraged to use Kalman filters
in zhis context by their successful application to human modeling (in simpler
control tasks) in the work of [7;9]).

The overall model we propose for the hypothesis evaluation function is
shown in Fig. 3-3. Data are presed to a state—-estimator component couposed of
several parallel Kalman filters (one for each hypothesis). Each Kalman filter
provides two key outputs: the first is a state estimats based on the data,

and the second is the error sequence, 83, which is the difference between the
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“ 3.3 COMPONENT DESCRIPTIONS
) The above mcdel involves much parallel processing of data: parallel
N state estimations; likelihood evaluations; and Bayea calculations. Such pro-
7 cessing may not be an accurate depiction of how the brain functions, but it
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Figure 3-3. Hypothesis Evaluation

measurements and the filter's prior estimates of what the measurements would
be. The error sequence is an indication of how well the data match the fil-
ter's expectations, and thus provides key information about how the data sup-
port each hypothesis. Each error sequence is input to a likelihood function
calculator that computes tne probability of a data sequence's being observed
given that the hypothesis is true. This function is input, in turn, to Bayes

theorem, which computes the desired probability p(Hi|z) of the hypothesis's
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does mimic how a commander would simultaneously consider several hypotheses

about what is going on, examining how new information support or raefute ecach

hypothesis.

3.3.1 Mental Model Implied by a Rypothesis
A conceptual model of the battlefieid is shown in PFig. 3-4. The inputs

to the world consist of our actions, the enemy's, and nature's. These ac-
tions cause the states of the world to evolve, which in turn is measured by

us through observations. The measurement process involves only some of the

X states.

)

. |
H

! - ENEMY ACTIONS —

- NATURE ————1 oF “HOW WORLD WORKS" —>1 " PROCESS >
E ot OUR ACTIONS ——>>

p

li 1

SYSTEM STATES R-0495

TRLAE & e
T

Figure 3-4. Input-Output Model

The general features of a mental model are captured by the specific lin-

ear system shown in the vector block diagram of Fig. 3-5. The state of the
‘- system is denoted by x, the output, y, observation, z, and inputs, u and w.
Of these vector variables, only the input, u, and observation, z, are avail-

able to the decisionmaker. The other variables represent an internal char-

acterization of "the way things work.” The use of vectors disguises the fact
f? that each of these variables can include many separate elaments, such as the
Y positions and velocities of several vehicles in three-dimensional space. The
‘rk
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size of these vectors, and therefore the true complexity of the model, needs

to be determined for each application. The beauty of the mathematics is that
the operations can be described in the compact vector-matrix form, independent

of the sisze of the systea.

MEASURENENT
INANDOM NO1SE
PROCESS ——el 6
WISE W y n
; STATES OUTPUTS  § OBSERVATIONS
OUR ACTIONS X A
CONTROLS 5 —L° : 2 I T ¢ o
A |
LEGEND:
v = CONTROLS A = PATRIX REPRESENTING SYSTEM GYNAMICS
n = STATES € = WATRIX SHAPING NOISE INPUTS
y = UTAUTS B = HATRIX SHAPING INPUTS (INPUY
2 = MEASUREMENTS EFFECTIVENESS)
w = PROCESS NOISE C = QUTPUT MATRIX
n = NEASUREMENT NOISE

Figure 3-5. Linear System Representation of a Mental Model

This model represents the state dynamics as a linear system, with possi-

bly time-varying coefficients, driven by the decisionmaker's actions and some

§: uncontrolled nolse or disturbances, and observed through imperfect measure-
mente, The transformation matrix, C, represents the fact that, even without

w noige, the entire state of the system cannot he observed, but only a limited

number of outputs. The state is the current information needed to predict

the future system outputs when combined with future inputs. It summarizes all

[ important current facts about the systenm.
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The parameters of the modei are contained in the A, B, C, and G transfor-
mation matrices and the noise covariance matrices Q, for the process noise w,
and R, for the measurement noise n. The noise piucesses represent unknown
inputs to the system and measurement, and are a convenient way of introducing
uncertainty. We need to know the average strength of these processes, but
we cannot kunow the actual values, w and n. In the standard filter, they are
represented as white, i.e., flat power spectrum, Gaussian processes, which if
integrated would result in Brownian motions. These noises are useful mathe-
matical fictions that introduce input and output uncertainty into the system
descripcion, and result in a well-behaved state estimator. Such noise de-
scriptions are reasonably accurate for a wide variety of actual noise proces-
ses, and the parameter values are not usually critical, i.e., they do not need
to be known precisely.

The model, as shown, represents a continvous-time system, where the vari-
ables are considered to be processes changing with time. Kalman filters can
also be created for discrete-time systems, where the processes change at spe-
cified time intervals. Both static and dynamic C2 models fit into either of

these frameworks.

3.3.2 Kalman Filters for Linear Process Models

Given the linear model above, and using only kaiowledge of u and z, a

Kalman filter is a device for optimally, under certain assumptions, estimating

~

the state of the system. The state estimate is cal..ed x, and the probability

~

density of the error (x-x), given the measurements, is a Gaussian density with
zero mean and covariance P, The estimate x is alsu the mean of the state con-
ditioned on the measurements up to the current tire, and the covariance P is

the conditional covariance,
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The filter has the structure shown in Fig. 3-6, where the optimal gain

matrix, K, is given by the equation

Twe W B Y P e ®
Pl T et T
* e et e
¥

AR

IH
2 |

K = PCTR-1 |

Fr’-

ﬁ ﬁ: and where the covariance P obeys a Riccati (quadratic) metrix differential

' m equation

N .

£ P = AP +PAT + GQcT - pCTR-1cP .

Lo

! The complicated form of this equation obscures the fact that the solution P
3 ﬁé is guaranteed positive and smaller than it would be without any measurements,

Sy

-~ i.e., information reduces uncertainty.
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Figure 3-6. Kalman Filter Block Diagram
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The filter's operation is characterized in Fig. 3-7. The filter is based
on a model of the system, used to predict the system output, and correct¢d by
the instantaneous errors, between the observation, z, and the filter's pre-

~

diction of the observation, z.

u KNOWN SYSTEM INPUT
—_—l B
K
z ERROR RATIO OF SYSTEM X
>0 > COVARIANCE TO MODEL >
MEASUREMENT STATE
NOISE POWER CORRECTION FSTIATE
EXPECTED TERM TO
OBSERVATION DRIVE MODEL
2=S'=Ci C | '
R-0507

Figure 3-7. Characterization of Filter Operation

Under ideal conditions, the error process, §, called the innovations or
residuals, is a white Gaussian process resembling the measurement noise.
Intuitively, if the filter's errors are larger than predicted, we expect that
the linear model 1s wrong. T[his forms the basis for the hypothesis testing

component of our decision model.

3.3.3 Multiple Hypothesis Testing

The hypothesis testing component of the decision model takes the input

data and computes the posterior probabilities p(H;|z), i.e., the probability
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that each hypothesis is true given the data, z. The calculation of these
probabilities uses several Kalman filters - one for each hypothesis. The
filter relies on a linear model and parameter set (Aj, By, etc.) and computes
a best linear estimate of the current state given the zecasurements. The hy-
pothesis tester uses the innovations from each Kalman filter to compute a new
probability for that hypothesis's being true.

To compute the posterior probabilities p(Hilz) using Bayes theorem, we

need the probability

P(zlﬂi) ’

called the likelihood function. For the linear Gausslan models discussed
earlier, the important result we will need is that the natural log of the
likelihood funciicn, called E4(t), “can be computad recursively essentially

by just squaring and integrating the residuals of the feedback term of the

optimal filter ..." [6, p. 286). Let 83(t) be the filter residuale (predic-
tion error) and, for mathematical simplicity in the sequel, assume that é4(t)
is available as a discrete-time process, either sampled at t=kA from a con-
tinuous filter or available directly from a discrete filter. Let Mj(t) be
the error covariance for the filter st time t=kA based on the iaformation

(measurements) up to time (k-1)A, i.e., the one-step ahead prediction error.

Then the log-likelihood function can be computed by the equation

2E4(ka) = &1, ,bias(ka) + Ei, observation(kd) ,

where

k Ry
€1,bilas(ks) == I In [Mi(nA) + -A-] - km In(2%) ,
n=]
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where m is the dimension of £ and

Le e e
V_rss

I

k Ri 7!
€1 ,observation(kd) = - I GI(BA) [Ni(nA) + Z—] §4(na) .
n=] .

2.7

The term in the inverse is the expected covarience of the §; process if the

i-th hypothesis were true; thus a large number for the sum will occur when the

P
g
A

84'a are large (pocor filter performance) and will result in a largely negative

N £i ,observation and, therefore, a small likelihood function, since

: e Ei(kA)
S p(zkAlﬂi) =e .
i
! -
A This process ie shown schematically in Fig. 3-8.
-
’ i [M; (ka)+R;/4]
S BIAS TERM
; FILTER
5 8. (ka) SQUARER
: s ! R-0500
] "y.'!
Figure 3-8, Likelihood Calculator
oz In the above calculator, the likelihood function represents the proba-

i bility of = given data 2(na), n=1,...,k, i.e., cccurring given that the i-th

hypothesis 1is true. The Jdiagram indicates how this function is updated as
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each new data sample arrives. The next step is to describe how the posterior
probabilities p(Hj|zx,) are updated.

This update is nominally accomplished using Bayes theorem, which simply

states:
P(zka|By)p(Hy)
P(Hy |zkp) = .

: p(2ka)
i:}f j p(Hy) is the a priori probability of the hypothesis's being true. For our !
! ki purposes, this is simply the same as the probability conditioned on data up |
' to the last measurements, P(H:ll!(k-l) a). The normalizing probtability p{zx,)
L
’ . is the same for all hypotheses and is found most easily from the fact that
Ny W
! the sum of all probabilities is 1:
X I
T p(Hilzgp) =1
. |l i=1
a7 Let

T :

D = p(zky) = 121 PCzia By )pCHy |2(k-1)8)

i

P and, thus,

A PCzia|H1)P(Hy |2(k-1)a)

; P(Hy |zgp) = .
- D

1 —

" We show this complete process schematically in Fig. 3-9.
i
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Figure 3-9., Bayes Theorem

3.3.4 Summary of The Modeling Approach

The complete hypothesis evaluation model is shown in Fig. 3-10. For each
hypothesis, there is a Kalman filter, likelihood function calculator, and Bayes
theorem calculator, which needs the outputs from all likelihood function cal-
culations for normalizatiom.

In many cases, the models for the different hypotheses will be similar,
and the above processing can be simplified. The states assoéiated with in-
controvertible facts (i.e., hypothesis-independent) could be grouped into a
single "meta-model,” and the state estimates from the corresponding meta-
filter would be passed on to the option-evaluation block., The error from this
filter would not provide information about the correctness of any of the hy-

potheses, and thus would not be passed to the likelihood function or Bayes
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theorem blocks. Since each of the other hypothesis-dependent filters would

now be simpler (of smaller dimension), the resulting likelihood functions and
probabilities would be somewhat easier to compute, and mathematically equiva-

lent to the original processing.

4% plzlH,) p(H, 12)
—={KALMAN FILTER 1 LIKELIHOOD CALCULATOR 1 BAYES THEOREM [—————"
=i Plz(H,) p(H,2)
»{KALMAN FILTER 2f— 2| LIKELIHOOD CALCULATOR 2 BAYES THEOREM [———
DATA s, .
. - [} . . A
z A4 (] . . (] .
L ] L
: 7 . p(z|H;) : piHyl2)
KALMAN FILTER 1! LIKELIHOOD CALCULATOR 1 ~>| BAYES THEOREM ——————e-
.1
°1
R-0%08

Figure 3-10. Hypothesis Evaluation Model

Although the generation and number of hypotheses are determined else-
where, the case when only one hypothesis is considered deserves special atten-
tion, If one hypothesis is considered, the normalization in Bayes theorem
results in a unit probability for that hypothesis. In some cases, this is an
accurate model of human behavior, at least for control purposes (i.e., the
entire SHOR model will act correctly since the control calculation will be

based on the only hypothesis considered). At other times, however, a decision-

maker might have c¢u. * one kv,.ounesis that he recognizes might be wrong. This

g
;.
.

-

behavior can be modeled in two ways. The first is to consider a null hypoth-

-~

esis (Hy) corresponding to mo ' :.ove estimate (xg=0). The filter for this

:

; s hypothesis would pass residua. (6) equal to the data (z) for the likelihood
y ‘ and Bayes calculations. This would result in the probability for his one

\
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hypothesis (Hj) being reduced (less than 1) since P(Hp|z) would not be iden-
tically zero. In effect, the filter errors from the one hypothesis would be
compared with the measurement noise alone,

The second way of examiuing a single hypothesis is to evaluate the like-
lihood function against an arbitrary threshold, where, in this case the like-
lihood functior does not use the Bayes theorem normalization. This technique
is, in fact, with suitable choice of threshold, similar mathematically to the
null hypothesis method, since the divislon in Bayes theorem involves two like-
lihood functions. 1In general, the null hypothesis approach is recommended,
but only after determining that only one hypothesis really exists. Often the
doﬁbt about the single hypothesis can be represented as a second hypothesis
with more structure than the null concept above. The added structure (beyond

~

x=0) will make the resulting probavnility calculations much more accurate.

3.4 ANTISUBMARINE WARFARE EXAMPLE

e
I3

This subsection illustrates how the foregoing hypothesis evaluation com-
ponent of the SHOR model might apply to a simplified antisubmarine warfare

situation: what are the states, measurements, and hypotheses, and how do

-1

they evolva? The example considers a task force sailing on an initial course
‘ZQ (North in the following figures) during an “alert” condition resulting from

higher-level intelligence. The task force commander® believes he is being

)

9

)

3

i

)

; ~
, N
t »

i

)

d

'

:

J

shadowed by an enemy submarine since he has had several sonar contacts at the

*The functions described in this section are usually carried out &s a cooper-
ative effort by the Composite Warfare Commander (CWC) and the ASWC., We shall
use the term task force commander (TFC) to represent this joint activity and
to distinguish it from actual CWC/ASWC doctrine and tactics, which it is not
intended to represent.
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trailing edge of his force, although none were confirmed. The situation is
illustrated in Fig. 3-11, where the circle represents the “keep-out” range of

the task force.

TASK FORCE

@ (OCCASIONAL
CONTACT

R-0489

:
N

3

H

<

h: -
y

.

.

‘.A.

: s
i

i'l |-.":

P
.

Figure 3-11. Initial Conditions

Initially, the TFC considers three hypotheses.

i " ° Hog: There is no enemy submmarine.
"
: pei e Hj: There is an enemny submarine trailing the convoy, but he
C is engaged in simple harassmeat.
Q . [ H2: There is a trailing submarine, and he is preparing for
. an attack.
-~
!
: *This notation is used to denote the probability that Hy is true given all of
S the data up to an including measurements at time O.
r&
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The subjective probabilities the commender places on these hypotheses at time
gero® are:

o p(Hp|zg) = 0.45 (nothing) ,

° p(H] |20) = 0.45 (harassment) ,

e p(Hy|zq) = 0.10 (attack) .

(Exact values are unimportant; only grossly relative weights are required).

In this example, the times denote discrete samples approximately 10
minutes apart. The Kalman filter corresponding to each hypothesis predicts
where the enemy submarine(s) will be, with time, given past position and
velocity measurements.

At time 1, another disappearing sounar contact is observed from the area
of the possible trailing submarine. The commander updates his probabilities
to be:

° p(Hg|21) = G.10 (nothing) .

® p(H)|21) = 0.70 (harassament) ,

e p(Hz|#1) = 0.20 (attack) .

Based on these probabilities, he orders a helicopter to investigate. (The
process whereby this decision is made is a subject for investigation next
year. The purpose here is to illustrate the evolution of the hypotheses for
a given scenario.)

At time 2, there is a second sonar contact, this time ahead of the fleet
and about 30° to the starboard. The first helicopter is now in the area of

the first (trailing) contact, but cannot find anything. The commander now

*This notation is used to denote the probability that Hy is true given all of
the data up to and including measurements at time O.
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recognizes this attack pattern from war games. He refines the second hypoth-

esis to be:

Ho: Task force under spacific type of enemy attack .

He also considers that both sonar contacts could be real, but that the enemy
is only engaging in advanced harassment. He considers a new hypothesis:

H3: Two submarines present, but only harassing .

He yedates the probabilities to be

e p(Hg|zz) = 0.05 (nothing) ,

° p(d)] |22) = 0.40 (shadow-harassment) ,
o ° p(Hz|22) = 0.45 (attack) ,
B
° p(H3|22) = 0.10 (two-submarine harassment) .

A major thrust of next year's effort is to develop the option evaluation

i' component of the decisionmaking process. For this example, however, one

THREECF . v SO T
e
R
.4.‘ ¢

feagsible response would be to dispatch the escort vessel that picked up the

i% | new contact to investigate, while preparing a second helicopter for launch.

As a precaution, he aight order the task force to change direction., The situ-
ation is shown in Fig. 3-12.

- At this point, we wish to demonstrate how the data can influence the

probabilities placed on hypotheses, and the resulting effects on the deci-

e 8 417 BN ¥ 37 VST LN
.
.
]

?; sions, by examining three alternate measurements at time 3,
. e p(Hg|z3g) = 0.40 (nothing) ,
; i& ° p(H)|23,) = 0.30 (shadow) ,
: N ® p(H2|234) = 0.25 (specific attack) ,

: ° p(H3|23,) = 0.05 (two-submarine harassment) .
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® SECOND CONTACT

\TASK FORCE
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~
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N
; POSSIBLE AREA OF
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/
)
!
| ® FIRST CONTACT
|
R-049?
=
E
i Figure 3-12. Schematic of an Evolving ASW Situation
o The ASWC decides to continue on the altered course. If he finds no evi-

[ v

dence of either submarine eoé&, he will resume original course, discarding Hp
F and Hj3. ! *

In the second case (3L), the new contact is confirmed by the escort
- vestel. The submarine is identified as an enemy type, and found to be maneu-
= vering for a possible attack. The first submarine has rot yet been confirmed,

and a fourth hypothesis is added to consider a single submarine (from ahead)

Tt RN MMy s 77 SR STV VR LSS S T

Lf attacking:
Hy: single-submarine forward attack .

. The updated probabilities become:
' r¢ e o(Hg|2z3p) = 0.00 (nothing) ,
f
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0.00 (shadow) ,

e p(H)|23p)

e p(H2|=z3p) = 0,20 (two-submarine attack) |,
° p(H3|23p) = 0.40 (harassment) ,
° p(Hy |23p) = 0.40 (single-forward attack) .

The commander decides to arm his weapons and prepare for a solo attack (Hg).
In the third case, both submarines are confirmed and observed to be

maneuvering for an attack. The probabilities become:

° p(Ho|2z3c) = 0.00 (nothing) ,

e p(H)|z3c) = 0.00 (shadow) ,

° p(H2|23.) = 0.60 (two-submarine attack) ,
° p(H3|23c) = 0.40 (harassment) .

The commander decides to prepare for the attack, arming weapons and possibly
changing course.

In these cases, we see how data can force a modification of the hypoth-
eses, greatly influence the probabilities associated with them, and thus
‘influence the decisions made. The role of Kalman filtering in this scenario
is almost transparen: - simply predicting the expected locations of the sub-
marines assuming the last sightings were real targets. In more complex exam-
ples, we expect the filters to play a more important role, predicting more

subtle (unobserved) states, and therefore possibly motivating new measurements

to observe those states.

3.5 NUMERICAL EXAMPLE
This subsection presents a simple numerical example of the hypothesis

evaluation component of the SHOR model to demonstrate how the system parameters

46
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affect the probability estimates and their variation with time. The example
coneiders two hypotheses and a simple scalar measurement.® The first hypoth-
esis 1s that the system state 18 a scalar first-order Gauss-Markov process
drivea by white Gaussian noise, and observed with additive white Gaussian
noise. This corresponds to an exponential autocorrelation function for the
state, The state might represent the increase (or decrease) of enemy probes
along & perimeter, and the measurement would be the reported increase or de-
crease, The second hypothesis is that there are no state dynamics (i.e.,
i-O), only measurement noise (i.e., false reports or activity).

The continuous-time model for the first hypothesis (H;), using the rota-

tion of subsection 3.3, is represented by

A=-]1 ; G=1 ;
B=1 ; Q=1 ;
C=1 ; R=1 3
us=_(0 ”

This system 1is shown in Fig. 3-13.

R-0490

Figure 3-13, First Hypothesis

*The general modeling approach was developed for arbitrarily large vector mea-
surements, states, and inputs. The example of this section is the simplest,
scalar case,

47

e e T, St . P T A S T L PR aw R ot L . P
TR T T S T T S TP PRI, T Y T PR S S P T A T S AT SR P




AR ol g »  SChirtar i Sirich

. - s T e n

ALPHATECH, INC.

The second hypothesis has the parameter set:

[ eN- N2
L I I ]
(= = I o R =)
o
|
o
® we Ve v

=
| ]
[

This system 1is shown in Fig. 3-14,

Figure 3-14. Second Hypothesis

‘ The discrete-time version of these systems, which has penerally similar
i behavior (for short sample times A), is given by
Bt Hy: oxedy = (1-8)x + 8wk,
’
F Zy = xx + vk
’ Hp: 2z = v ,
IR
;'g where
) R
| - i=k ,
E[vigc, v4] = A
. 0 otherwise ,
P
. (under both hypotheses) and
by
5
_— 4y
. (.';
o
i
‘ R
i.- “u l. te T oo h N = . . - - .
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& Q
- Z =k ,
. E[wg wy] =
! 0 otherwise ,
‘ under By, The noises are independent of each other.
P Onr hypothesis evaluation model constructs two Kalman filters (one for
N each hypothesis), given by
£ Hy: xg4p = (1-8)xx + AK(zx = (1-A)xk) |
o K=P/R ,
2 6k = Zk = Xk
& W X =0,
N Sk = zk = vk«
ix Under Hy, the gain K is determined from the conditional covariance P, which
satisfies the equation
L -1
R
Pl =Ml + |- ] .
B k+1 k+1 A
- M) = (1-2)2P + AQ .
. For Q=R=1, and for A=C.l, this has the solution (in steady-state), when
- Pp+1 = Px):
P = 0,426 ,
i M= 0.445 .
49
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P denotes the conditional covariance just after a measurement, and M the co-
variance just before a measucement (i.e., the one-step prediction error). For

comparison, the continuous-time variance is given by

r-\[z_-l-o.au. .

Thus, little informacion is lost in the discrete version (A=0.1).
We next want to examine how the hypothesis evaluation takes place if H)
were true. Then the filter above is optimal, end the error process for the

first filter has a covariance given by

R
E[62 |H ] =M+ - .
ko1 A

For the second filter, the error process becomes
Ok = x + vk,

which has a covariance given by

E[62 'H | = %2 +
kg 1

[~

where x2 is the covariance of the actual state, found from

~,
X2 w P = (1-A)2Pg; + AQ ,
0Ly, = ¢ oL, * 42

vhich in steady-state, becomes

;2 = 0,526 »
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Using the processing formulas of subsection 3.3, and assuming that the
average value of 82 1s approximated by the expectations above, we can now com-
pute the posterior probabilities p(H)|zyx) and p(Hy|zy) with time (as the mea-
surements are taken). In any experiment, the actual values of the error se-
uences will be noisy, and the probabilities may become more ¢: less accurate,
But on the average, we expect them to behave as shown in Fig. 3-15. The fig-
ure depicts the first 30 samples of a hypothesis evaluation (H) was true) that
began with the filters in steady-state, that s, the initial conditions of the
covarlances were equal to their steady-state values so that no gain transients
occurred, and with three initial probabilities for p(Hllzo): 0.25; 0.50, and

0.75. 1In all cases p(Hp|zg) is simply

p(dg|zg) =1 - p(H)|zK)

0 + ¥ —

0 10 20 30
SAMPLE (k)

R-0498

Figure 3-15. Posterior Probability Variation with Time (H; True)
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We see that, on the average, the correct hypothesis is chosen reasonably

quickly, unless the initial estimate p(ﬂ1|zo) was poor or the number of sam-

ples small., The speed of response of the probabilities is determined by the

LR

parameters in the model, through the covariances and initial estimates, and
the actual noise samples (data) received. We note that the case vhere H; is

.I - true produces similar (symmetric) results for p(Hp|zy).

3.6 SUMMARY
This section has presented our concept of an expanded SHOR model for

human decisionmaking in C3., SHOR was decomposed into hypothesis and option

Tea"s"s 2T 2l R0, s
Ve

evaluation components, connected by the state estimates and hypothesis prob-
! h abilities. A detailed hypothesis evaluation model was. then designed that cap-
tures the imporant human behavior. An ASW example was presented to illustrate
the overall SHOR approach, and a simple numerical example was discussed that

I . demonstrated how the hypothesis evaluation component of the model works.
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SECTION 4

DISCUSSION AND RECOMMENDATIONS FOR FUTURE RESEARCH

4.1 DISCUSSION
Summary. The SHOR paradigm was presented as a structure for analyzing
human cognitive decisionmaking. The SHOR paradigm describes decisionmaking

as a cascading of four activities. They are information processing, hypoth-

esis generation and evaluation, option generation and evaluation, and decision

execution,
;?: A model of a commander's hypothesis evaluation activity was developed.
.- The model was cast in the Bayesian (optimal) framework. The inputs to the
.l model are the hypotheses and sensor data, and its outputs are the posterior
- probabilities of the hypotheses' being true and their respective states of
i nature. It has been tacitly assumed that these outputs are sufficient for
! the commander to perform the option generation and evaluation activities,
i A brief example of how the posterior probabilities of the hypotheses
{i; evolve in the light of new data was presented.

Implications.

- l. Based on previous discussions, data are received, identified,
» and interpreted to have information value by perception pro-
T cessing. The reason, then, to model this process would be an
> attribution of importance to how preliminary data are inter-

e
preted to later modeling efforts, such as decisionmaking or
selection. In the ASWC context, sensor data or intelligence
information are generally presented to commanders in an unam~-
biguous manner - though it is often uncertain in nature. Such
.. umambiguity precludes the role of perception processing in the
i modeling effort.
L
53
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N 2. In the context of ASW, hyputheses are the existence or nonexis-
b tence of target tracks and the target's classifications. All
targets are presumed hostile.

!' 3. The Bayesian hypothesis evaluation technique described must be

' revised to include human liaitations and biases. It is improb-

able that commanders have the cognitive capacity to grapple

o with the combinatorial complexity requisite for the solution of :

v this algorithm., Nor is there any evidence that they do it in {
this way. ;

NG 4. The depth first, one-step backtrack option evaluation algorithm
[31) is not suitable. We have learned from conversations with

SN ASW commanders that they do not optimize. They satisfice [32],

9 i.e., they meet some predeterained requirements for action.

One commander described the option evaluation activity as

. “"gelecting the first feasible action.” Some commanders simply

j{ adhere to standard operating procedures or doctrine.

4.2 RECOMMENDATIONS FOR FUTURE RESEARCH

g5
o
L

" Next year's effort will involve the development of a computer simulation

v
e

of an ASW battle group commander in a hostile environment. The decision prob-

*Tr
f

lem will be as follows. The ASW commander will be responsible for the track-

i' ing, localization, and prosecution of all subsurface contacts to preclude the

enemy from coming within range to launch torpedoes or cruise missiles against
the carrier. The ASWC will have at his disposal sensors and weapons. These
sensors and weapons are components of, or contained on, the battle group's
destroyers, attack submarine, helicopters, and carrier-based aircraft.

The seminal activity of the ASWC will then be situation assessment. On

¥ W §F F N VLIV .TEENEREG V- T T
S . ’,

~ a continuous basis, he is asking and trying to clarify these questions [1l]:
) Is the datum a false alarm?
° If not, is it an old or new target?

o How can I resolve these ambiguities?

- TE=E. -

. . ‘-.‘.
. P
. ae’e %

® Which sensor(s) and where to deploy?

R
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° Am I rendering the carrier vulnerable to attack by an, as yet
undetected enemy submarine?

The model of the ASWC's decision process will have three major

Py A0k P PR REt - gR g v
"', -, " R :-l.‘.-: 1 ".:J

subroutines.

Truth subroutine. This subroutine will model the motion of the battle

group's platforms, the status of their sersors, and the motion of the enemy

subaarines. The inputs to the subroutine will be the ASWC's decisions, over-

" e"a"a s 220 - .0 . 0
SO LA
-+~

N all battle group line of intended movement, and enemy submarine trajectories.

The outputs will be the new battle group locetions and the data (contacts)

generated by the operational sensors.

a

l - Iracking subroutine. This subroutine will model the hypothesis evalua-

C: tion, or situation assessment, activity. That is, sensor data will be related
to target tracks. The inputs to the subroutine will be the senasor data and

i ii battle group state estimates. The outputs will be the state estimates of the

l tracks and their posterior probabilities of being true tracks. This sudb-

; - routine will build upon the work presented in Section 3.

; Decision gubroutine. The commander's decisionmaking algorithm will be

WSS KR Em——— -
.
1
- v s
. 4~

. modeled in this subrouiine. His controls include the motion and responsibil-

ity of ASW platforms. More specifically, he directs the platform movement in

ff space, and platform sensor and weapon status. His decisions will be made on
) the basis of the perceived threat of the target and the cost (increased vul-
| ii nerability) of deploying an asset to gather more information. The inputs to
r . the subroutine will be the state estimates of the tracks, the posterior proba-
: bilities of being true tracks, and the state estimates of the battle group.
g
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The outputs will be the platform commands. The decision subroutine will en-

code the satisficing or bounded rationality nature of ASW decisionmaking.
‘Interviews with experienced ASW players will be held to assess the rea-~

sonableness of the model,
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